高三物理知识点高考复习内容

| 沐钦

高三物理知识点高考复习内容

1.电路的组成:电源、开关、用电器、导线。

2.电路的三种状态:通路、断路、短路。

3.电流有分支的是并联,电流只有一条通路的是串联。

4.在家庭电路中,用电器都是并联的。

5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

7.电压是形成电流的原因。

8.安全电压应低于24V。

9.金属导体的电阻随温度的升高而增大。

10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI

14.串联电路中:电压、电功和电功率与电阻成正比

15.并联电路中:电流、电功和电功率与电阻成反比

16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。

高考物理必考知识点总结归纳

声与光

1.一切发声的物体都在振动,声音的传播需要介质。

2.通常情况下,声音在固体中传播最快,其次是液体,气体。

3.乐音三要素:

①音调(声音的高低)

②响度(声音的大小)

③音色(辨别不同的发声体)

4.超声波的速度比电磁波的速度慢得多(声速和光速)

5.光能在真空中传播,声音不能在真空中传播。

6.光是电磁波,电磁波能在真空中传播。

7.真空中光速:c =3×108m/s =3×105km/s(电磁波的速度也是这个)。

8.反射定律描述中要先说反射再说入射(平面镜成像也说"像与物┅"的顺序)。

9.镜面反射和漫反射中的每一条光线都遵守光的反射定律。

10.光的反射现象(人照镜子、水中倒影)。

11.平面镜成像特点:像和物关于镜对称(左右对调,上下一致)。

12.平面镜成像实验玻璃板应与水平桌面垂直放置。

13.人远离平面镜而去,人在镜中的像变小(错,不变)。

14.光的折射现象(筷子在水中部分弯折、水底看起来比实际的浅、海市蜃楼、凸透镜成像)。

15.在光的反射现象和折射现象中光路都是可逆的

16.凸透镜对光线有会聚作用,凹透镜对光线有发散作用。

17.能成在光屏上的像都是实像,虚像不能成在光屏上,实像倒立,虚像正立。

18.凸透镜成像试验前要调共轴:烛焰中心、透镜光心、和光屏中心在同一高度。

19.凸透镜一倍焦距是成实像和虚像的分界点,二倍焦距是成放大像和缩小像的分界点。

20.凸透镜成实像时,物如果换到像的位置,像也换到物的位置。

运动和力

1.物质的运动和静止是相对参照物而言的。

2.相对于参照物,物体的位置改变了,即物体运动了。

3.参照物的选取是任意的,被研究的物体不能选作参照物。

4.力的作用是相互的,施力物体同时也是受力物体。

5.力的作用效果有两个:

①使物体发生形变。

②使物体的运动状态发生改变。

6.力的三要素:力的大小、方向、作用点。

7.重力的方向总是竖直向下的,浮力的方向总是竖直向上的。

8.重力是由于地球对物体的吸引而产生的。

9.一切物体所受重力的施力物体都是地球。

10.两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力。

11.二力平衡的条件(四个):大小相等、方向相反、作用在同一条直线上,作用在同一个物体上。

12.用力推车但没推动,是因为推力小于阻力(错,推力等于阻力)。

13.影响滑动摩擦力大小的两个因素:

①接触面间的压力大小。

②接触面的粗糙程度。

14.惯性现象:(车突然启动人向后仰、跳远时助跑、运动员冲过终点不能立刻停下来)。

15.物体惯性的大小只由物体的质量决定(气体也有惯性)

16.司机系安全带,是为了防止惯性(错,防止惯性带来的危害)。

17.判断物体运动状态是否改变的两种方法:

①速度的大小和方向其中一个改变,或都改变,运动状态改变。

②如果物体不是处于静止或匀速直线运动状态,运动状态改变。

18.物体不受力或受平衡力作用时可能静止也可能保持匀速直线运动。

机械功能

1.杠杆和天平都是"左偏右调,右偏左调"

2.杠杆不水平也能处于平衡状态

3.动力臂大于阻力臂的是省力杠杆(动滑轮是省力杠杆)

4.定滑轮特点:能改变力的方向,但不省力

动滑轮特点:省力,但不能改变力的方向

5.判断是否做功的两个条件:

①有力

②沿力方向通过的距离

6.功是表示做功多少的物理量,功率是表示做功快慢的物理量

7."功率大的机械做功一定快"这句话是正确的

8.质量越大,速度越快,物体的动能越大

9.质量越大,高度越高,物体的重力势能越大

10.在弹性限度内,弹性物体的形变量越大,弹性势能越大

11.机械能等于动能和势能的总和

12.降落伞匀速下落时机械能不变(错)

热学

1.实验室常用温度计是利用液体热胀冷缩的性质制成的

2.人的正常体温约为36.5℃。

3.体温计使用前要下甩,读数时可以离开人体。

4. 物质由分子组成,分子间有空隙,分子间存在相互作用的引力和斥力。

5. 扩散现象说明分子在不停息的运动着;温度越高,分子运动越剧烈。

6. 密度和比热容是物质本身的属性。

7. 沿海地区早晚、四季温差较小是因为水的比热容大(暖气供水、发动机的冷却系统)。

8. 物体温度升高内能一定增加(对)。

9.物体内能增加温度一定升高(错,冰变为水)。

10.改变内能的两种方法:做功和热传递(等效的)。

11. 热机的做功冲程是把内能转化为机械能。

压强知识

1. 水的密度:ρ水=1.0×103kg/m3=1 g/ cm3

2. 1m3水的质量是1t,1cm3水的质量是1g。

3. 利用天平测量质量时应"左物右码"。

4.同种物质的密度还和状态有关(水和冰同种物质,状态不同,密度不同)。

5. 增大压强的方法:

①增大压力

②减小受力面积

6.液体的密度越大,深度越深液体内部压强越大。

7.连通器两侧液面相平的条件:

①同一液体

②液体静止

8.利用连通器原理:(船闸、茶壶、回水管、水位计、自动饮水器、过水涵洞等)。

9.大气压现象:(用吸管吸汽水、覆杯试验、钢笔吸水、抽水机等)。

10. 马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值。

11. 浮力产生的原因:液体对物体向上和向下压力的合力。

12. 物体在液体中的三种状态:漂浮、悬浮、沉底。

13. 物体在漂浮和悬浮状态下:浮力 = 重力

14. 物体在悬浮和沉底状态下:V排 = V物

15. 阿基米德原理F浮= G排也适用于气体(浮力的计算公式:F浮= ρ气gV排也适用于气体)

电学

1.电路的组成:电源、开关、用电器、导线。

2. 电路的三种状态:通路、断路、短路。

3. 电流有分支的是并联,电流只有一条通路的是串联。

4. 在家庭电路中,用电器都是并联的。

5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

7. 电压是形成电流的原因。

8. 安全电压应低于24V。

9.金属导体的电阻随温度的升高而增大。

10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

12. 利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

13.伏安法测电阻原理:R= 伏安法测电功率原理:P = U I

14.串联电路中:电压、电功和电功率与电阻成正比

15. 并联电路中:电流、电功和电功率与电阻成反比

16."220V 100W"的灯泡比"220V 40W"的灯泡电阻小,灯丝粗。

磁场知识

1. 磁场是真实存在的,磁感线是假想的。

2.磁场的基本性质是它对放入其中的磁体有力的作用。

3.奥斯特试验证明通电导体周围存在磁场(电生磁)。

4. 磁体外部磁感线由N极出发,回到S极。

5. 同名磁极相互排斥,异名磁极相互吸引。

6. 地球是一个大磁体,地磁南极在地理北极附近。

7. 磁场中某点磁场的方向:

①自由的小磁针静止时N极的指向

②该点磁感线的切线方向

8.电流越大,线圈匝数越多电磁铁的磁性越强。

物理高考必背知识点归纳总结

1.力

力学是高中物理的开山和基础,弹力的方向和弹簧、摩擦力应该是一轮复习的重中之重,受力分析的判断不仅关乎到这个部分,也会影响整个物理学科,所谓武学基础——“蹲马步”

2. 运动学

这个部分是看起来简单,但做起来易错,且计算不算死人不罢休的境界,各种刹车、追击、相遇、滑块板块、传送带,没有做题底蕴的支撑,你会感到深深的恶意。

3. 牛顿定律

牛顿就是力学中的隐藏高手,就是王者荣耀中的法师,攻击力本来就不错,还可以对运动学、电场进行加持,让你面对的陡然上升了几个level功力。连接体是这里面一轮要拿下的核心考点。

4. 曲线运动

两大法宝:平抛和圆周,不能说难,但是高考年年出现,平抛的计算、水平圆周模型、竖直圆周模型、向心和离心的机车拐弯,这四个点重点拿下,然后给自己大大的微笑吧

5. 天体运动

天体会的人觉得可爱简单送分,不会的人觉得变态、恶心、惹人烦,这个部分的核心公式之后很长的一组,但是出题的方式确异常灵活,且题目和实际结合多变,总从意想不到的地方出手,高手过招,就是毫厘之间定胜负,数量级运算可以帮助你不少哦。

6. 功和能

力学部分大boss的存在,谁都可以结合,从弹簧到皮带到滑块,等你做多了你会感到世界的真谛就是动能定理和一堆物理物体,多过程、大计算、复杂分析,烧脑的侦探小说也就到这个程度了,一轮必须啃下的硬骨头,想想上甘岭战役的激烈程度吧

7. 电场

这就像一个软妹子,看起来瘦弱不堪,但实际是芭比金刚,电场线、带电粒子运动、电容器、这些都是理工科出题人最喜欢的软妹子类型,多接触接触,熟悉了就好

8. 恒定电路

这个部分最难的是电学实验,7个电学实验要如数家珍,有人问为啥啊?因为考,年年考,考到12分熟了,其他的召唤出体内强大的初中物理基础就可以了。

9. 磁场

电磁学的大boss,一剑封喉,杀人于无形,多见于选择题压轴或者和电场结合出在物理最后一道压轴题,难度系数3.5,转体动作复杂且难,尽量从步骤上逐个击破,拿下这个你的高考物理满分有望了。

10. 电磁感应/交变电流

每年必考的考点,电磁感应图像、理想变压器、远端输电、杆和框在磁场中运动都是热点,如果知道出题人的喜好,接下来你就知道该做什么了

11. 动量和原子物理

动量的六个常见模型要全面掌握,原子物理类似于文科记忆加理解就好了

12. 选修

不论你是选择光和机械波还是选择热学,选修的诀窍就是多做题然后系统总结考点和易错点,这个是覆盖面的问题,当覆盖面足够的话,拿下就指日可待了。

高中物理知识点记忆顺口溜

动量定理解题

动量定理来解题,矢量关系要牢记,

各量均把正负带,代数加减万事吉,

中间过程莫关心,便于求解平均力。

动量守恒

所受外力恒为零,系统动量就守恒,

碰前碰后和碰中,动量总和都相同,

矢量关系别忘记,谁正谁负要分清。

力的作用效果

时间积累动量增,空间积累增动能,

瞬间产生加速度,改变状态或变形。

动量定理 · 动能定理

动量动能二定理,解起题来特容易,

动量定理求时间,动能定理求位移。

弹簧振子振动

弹簧振子来振动,简谐运动最典型。

a随回复力变化,方向始终指平衡,

大小位移成正比,位移特指对平衡注,

速度与a变化反,这个减时那个增,

动能势能互转化,周期变化且守恒。

(注:平衡位置)

振动周期

振动快慢周期定,固有周期不变更,

一周方向变两次,四倍振幅是路程。

单摆

质点连着轻细绳,理想单摆就做成,

重力分力来回复,小角度下简谐动。

g和摆长定周期,振幅无关等时性,

伽利略和惠更斯,前者发现后首用。

振动的分类

机械振动有三种,依据能量来分清。

阻尼减幅能量减,简谐等幅能守恒,

策动力下受迫振,外能不断来补充。

稳定频率外力定,步调一致共振生。

机械波

振动传播波形成,振源介质不可省,

质点振动不迁移,传播能量和振动,

后边质点总落后,只缘波动即带动。

两向垂直称横波,纵波两向必平行。

横波的图象

横波图象即波形,各个质点位移明。

波长振幅可读出,传播方向须标清,

逆着传向看走势,振动方向就可定。

反相振动正相反,同相振动完全同。

波的频率随波源,传播速度介质定,

波长说法有多种,振源介质共确定。

库仑力

点电荷间库仑力,平方反比是规律,

大小可由公式求,方向依据吸与斥。

电场线

电场线,人为添,描绘电场真方便,

场强大小看疏密,场强方向沿切线。

典型电场电场线

光芒四射正点电,万箭齐中负点电,

等量同号蝶双飞,等量异号灯(笼)一盏。

求电场强度

求场强,方法多,定义用途最广阔,

点电电场有公式,平方反比决定着,

匀强电场最典型,E、U关系d连着,

静电平衡也能用,合场强零矢量和。

电势能

电荷处在电场中,一定具有电势能,

电势能,是标量,但有正负还有零,

大小正负公式定,E=qU要记清,

电场力若做负功,电势能就一定增,

电势能,若减少,电场力定做正功。

静电平衡

导体放入电场中,瞬间即可达平衡,

平衡导体特点多,一项一项要记清,

等势体,等势面,内部场强处处零,

电场线定垂直面,表面场强可非零,

电荷分布看曲率,尖端放电显特征。

静电屏蔽

金属罩中放导体,外来电场被屏蔽,

内生电场外屏蔽,定是金属罩接地,

屏蔽意为无影响,并非一定无电场,

静电平衡来应用,此处合场强为零,

仪器戴上金属罩,防止外场来干扰,

高压作业金衣穿,静电屏蔽保安全。

带电粒子运动(一)

粒子匀强电场中,运动类型有两种,

加速减速匀变速,动能定理都能行,

偏转运动类平抛,垂直两向来合成,

速度偏角三因素,设备电量初动能,

离开电场匀速动,反向延长指正中。

解综合题

解综合题并不难,审清题意是关键,

借助草图方法好,分段处理很常见,

平衡临界须关注,运动随着受力变。

求谁设谁常用到,顺藤摸瓜来思考,

牵扯进去即成功,方程数目不能少,

推倒演算求细心,验算作答莫忘了。

分压器限流器

滑变电阻两接法,串联限流并分压,

分压电压可达零,电压变化范围大。

游标卡尺千分尺

游标卡尺有两种,分度读位都不同,

十格读到十分位,二十分度百分停。

螺旋测微千分尺,读到千分才能行。

E感求法

E感求法有两种,切割变率都能行,

F变化率更普适,BLv⊥要记清,

不垂直时化垂直,还要匝数来相乘。

楞次定律

E感(I感)方向楞次定,增反减同要记清,

阻碍变化是核心,实质本是能守恒,

导体切割磁感线,右手定则最好用。

自感日光灯

电流自变自感生,规律电磁感应同。

常见现象有涡流,应用实例日光灯。

镇流器,是线圈,自动开关叫启动(器)。

高考的物理知识点总结

一、质点的运动

(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

动能保持不变,向心力不做功,但动量不断改变。

59730